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Abstract. With concurrent systems being prevalent in our modern world,
concurrent programming is now a cornerstone of most computer science
curricula. A wealth of platforms and tools are available for assisting
students in learning concepts of concurrency. Among these is pseuCo,
a light-weight programming language featuring both message passing
and shared memory concurrency. It is supported by pseuCo Book, an
interactive textbook, focusing on the theoretical foundations of pseuCo,
concurrency theory. In this paper, we extend pseuCo Book with a chapter
on Programming with pseuCo. At its core is a custom verification system,
based on pseuCo’s Petri net semantics, enabling practical programming
exercises to offer fast in-browser model checking that can validate the
program’s internal use of concurrency features and provide comprehensive
debugging features if a fault is detected.
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1 Introduction

Since its infancy, computer science education has been a task of growing im-
portance – and difficulty. The ever-growing use of concurrency, with multi-core
CPUs now being prevalent even in embedded devices, has certainly furthered
that trend. Today, instruction in practical concurrent programming, and the
theoretical underpinning needed to fully understand it, is an essential component
of a complete computer science curriculum.

Instruction in practical computer science often involves having students write
programs. This has created interest in autograding, technologies to automatically
check solutions for mistakes and provide feedback or assign a grade [10, 11]. While
this may seem like an excellent use case for verification techniques, in practice,
autograding is often based on testing. This approach is powerful in many cases,
e.g. even allowing autograding of full Android applications [2], however, testing-
based autograding is particularly challenging in concurrency-related exercises, as
concurrent programs are usually nondeterministic and may have bugs that are
hard (or even impossible) to detect in a test environment [3].



Moreover, independent of whether testing or stronger verification-based tech-
niques are used in autograding, they are often used to verify a program’s externally
visible behavior. While this often is sufficient, in many cases, a deeper look into
a program’s internals is required to ensure students have solved an exercise in
the intended way. This is a typical requirement in introductory-level concurrency
exercises which are often exploitable with easy non-concurrent solutions that
have the same externally visible behavior than the concurrent program students
were intended to write.

In this paper, we present a verification-based approach for autograding
introductory-level concurrent programming exercises. Our approach is built
around pseuCo [1], an academic programming language designed to teach stu-
dents the basics of message passing and shared memory concurrency. We use
pseuCo’s Petri-net-based semantics [5] to gain insight into the semantics of the
pseuCo program under analysis, enabling verification of properties about the use
of concurrency-related features. For example, this allows us to not only verify
the output of a program, but confirm that it uses channel-based communication
between agents in a predetermined way, or that it is free of data races.

Our verification system is deeply integrated into pseuCo Book [4], a web-based
interactive textbook focused around teaching concurrency theory and practice. It
backs the interactive exercises in a new Programming chapter of pseuCo Book
that guides students through their first contact with message passing and shared
memory features, ensuring that the exercises only accept programs using these
constructs correctly and as intended. When a student’s program fails verification,
we use the pseuCo Debugger, a Petri-net-backed debugging tool for pseuCo
programs [5] originally developed for the web IDE pseuCo.com [1], to display
failure traces to students in a way that is easily understandable without any
knowledge about verification technologies or Petri nets.

Structure of this paper. The remainder of this paper is structured as follows.
Section 2 formalizes the properties that are to be analyzed. Section 3 documents
the implementation of the model checker as part of pseuCo Book. Section 4
describes the new Programming chapter of pseuCo Book that is supported by
this technology. Finally, Section 5 concludes this paper.

2 pseuCo Program Properties

2.1 Motivating Example: Message-Passing-Based Termination

In this section, we’ll look at an example exercise from pseuCo Book.
PseuCo’s message passing features allow the programmer to use synchronous

and asynchronous channels to transfer primitive values between agents. An
example of this – typically one of the first pseuCo program students see – is
printed in Listing 1.1. This program computes the value of (3!)! using a factorial
agent that computes the factorial of any number it receives on a synchronous
(handshaking) channel, then sends it back on the same channel.



Listing 1.1. A simple message passing pseuCo program
1 void factorial(intchan c) {
2 int z, j, n;
3 while (true) {
4 z = <? c; // receive input
5
6 n = 1;
7 for (j = z; j > 0; j--) {
8 n = n*j;
9 }

10
11 c <! n; // send result
12 };
13 }
14
15 mainAgent {
16 intchan cc;
17 agent a = start(factorial(cc));
18 cc <! 3;
19 int mid = <? cc;
20 println("3! evaluates to " + mid + ".");
21 cc <! mid;
22 println("(3!)! evaluates to " + (<? cc) + ".");
23 }

While receiving messages from a specific channel is relatively straightforward,
in some cases, a programmer may need to set up an agent to react to multiple
possible message passing actions, e.g. incoming messages on two different channels.
Doing so requires a dedicated language construct, which pseuCo borrowed from
Go: the select case statement.

To teach students how to use this statement, pseuCo Book contains an exercise
asking students to modify the program from Listing 1.1 such that the factorial
agent terminates after it is no longer needed by the main agent.

There are two apparent methods to do so:

1. reserve a special value, like −1, that triggers the agent’s termination, or
2. add a second, dedicated channel for termination requests.

The first method does introduce a corner case, so the exercise asks students
to add termination cleanly, using the new select case statement to add a
Boolean-typed control channel.

What does an autograder need to check when validating a solution to this
exercise? Adding termination does not actually change the externally visible
behavior of the program1. But even if the autograder was able to determine
whether all agents have terminated at the end of execution, this would not
actually test whether students have implemented the exercise in the intended way.
For example, students could replace the while (true) loop with a hardcoded
for (int i = 0; i < 2; i++) loop to cause the agent to terminate after two

1 The pseuCo semantics does not allow externally distinguishing between termination
and a deadlock.



iterations which would work in this specific example, but not in general (and
does not demonstrate knowledge of how to use the select case statement).

While some of these pitfalls can be overcome by testing the students’ submis-
sion in multiple, slightly different contexts, a more thorough solution is for the
autograder to also inspect the program’s internals, checking that every possible
execution of the program completes these steps in order:

1. start an agent (agent 1) from the main agent (agent 0)
2. use synchronous communication to send the value 3 from agent 0 to agent 1
3. use synchronous communication to send the value 6 from agent 1 to agent 0
4. have agent 0 print "3! evaluates to 6."
5. use synchronous communication to send the value 6 from agent 0 to agent 1, with

agent 1 being in a select case statement with 2 cases for receiving values
6. use synchronous communication to send the value 720 from agent 1 to agent 0
7. and then, in any order

– print "(3!)! evaluates to 720." from agent 0
– complete these steps in order:

(a) use a synchronous channel to send a Boolean from agent 0 to agent 1, with
agent 1 being in a select case statement with 2 cases for receiving values

(b) terminate agent 1

Indeed, this is the approach we will follow. The following sections formalize
this type of property.

2.2 pseuCo Verification Formalities

Let pseuCo be the set of pseuCo programs. We define colored Petri nets following
Jensen [8], i.e. as a tuple CPN = (Σ,P, T,A,N,C,G,E, I) where Σ is the set of
color sets, P the sets of places, T the set of transitions, A the set or arcs, N the
node function, C the color function, G the guard function, E the arc expression
function and I the initialization function. For clarity, we refer to the steps of a
colored Petri net’s execution as firings.

The pseuCo compiler [5] translates every valid pseuCo program p ∈ pseuCo
into a colored Petri net CPN and labels : P ∪ T 7→ 2L, a pseuCo label function
that assigns sets of labels to both places and transitions. The set of labels L,
not described in full detail here, contains labels that describe the role of places
and transitions in pseuCo terminology. For example, a place could be labeled
(global-variable, “x”) to indicate that it holds the value of a global variable named
x, or a transition could be labeled (send-async) to indicate that it handles sending
a message to an asynchronous channel (i.e. writing the value to its buffer).

To formalize our properties, we use LTL [9]. We assume a set AP of atomic
propositions, deferring details to the next section. Skipping details for brevity, we
assume a mapping from firings of the Petri net to subsets of atomic propositions.

The properties that are relevant for autograding pseuCo exercises can then
be expressed as LTL formulas, i.e. terms ϕ with

ϕ ::= ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | ©ϕ | �ϕ | �ϕ | ϕ U ϕ | ap (1)

and ap ∈ AP .



Atomic Propositions. Using the pseuCo label function (and knowledge of the
internals of the pseuCo-to-CPN compiler), a Petri net firing can be analyzed to
determine which pseuCo action the firing represents. This allows us to define and
recognize atomic propositions that describe whether a firing

– prints a specific value,
– has specific agents participate in that firing (identified by their IDs),
– has a (single) participating agent with a specific expected recursion depth,
– represents a synchronous message passing transaction (handshaking), with a

specified value,
– represents writing to or reading from an asynchronous (buffered) channel,

with a specified value,
– originates from a select case statement (with a certain number of branches),
– starts or terminates an agent,
– represents a procedure call (with specific arguments),
– initializes, locks, or unlocks a lock,
– reads or writes a global variable (with a specific name and value), and
– reads or writes a structure field (with a specific name and value).

These atomic propositions can then be used by exercise designers to describe
the intended behavior of a pseuCo program without insight into the specifics of
the pseuCo-to-CPN compiler.

Step Checklists. Generally, the full flexibility of LTL is not needed to express
the properties used for autograding pseuCo exercises. To simplify the process of
specifying these properties – and allow representing the property, and its current
state, more easily to a user – we introduce a simplified syntax for these properties,
called step checklists. The set of step checklists S is defined as

s1, . . . , sn 3 S ::= Step (v1) | Sequence (s1, . . . , sn) | Parallel (s1, . . . , sn) (2)
v1, . . . , vn 3 V ::= v1 ∧ v2 | v1 ∨ v2 | ¬v1 | ap (3)

with ap ∈ AP . Conceptually, a step checklist is a list of steps a pseuCo program
has to complete – in a fixed order, in arbitrary order, or in arbitrarily nested
fixed-order and free-order blocks.

Together with the atomic propositions described previously, step checklists
allow a compact representation of properties. For example, the first message
passing exercise in pseuCo Book uses the atomic propositions startAgent that
holds when an agent is started, agents(x ) that holds when the set of agents
participating in a step is exactly x, handshake(v) that holds when value v is
passed by handshaking, and print(v) that holds when value v is printed:

Sequence

Step (startAgent) ,

Step (agents({0, 1}) ∧ handshake("World")) ,
Step (agents({1}) ∧ print("Hello, World!"))

 (4)

This step checklist ensures the main agent starts an agent, passes "World" to it,
after which that agent prints a greeting.

https://book.pseuco.com/#/read/pseuco/message-passing/interactive/pseuco-message-passing-hello-world
https://book.pseuco.com/#/read/pseuco/message-passing/interactive/pseuco-message-passing-hello-world


A step checklist s can easily be converted into an LTL property JsK:

ltl(Step (v)) := v (5)
ltl(Sequence (s1, s2, . . . , sn)) := ltl(s1) ∧© � (ltl(s2) ∧© � (. . . ltl(sn))) (6)

ltl(Parallel (s1, . . . , sn)) := (�ltl(s1)) ∧ · · · ∧ (�ltl(sn)) (7)
JsK := �ltl(s) (8)

3 Verification

LTL formulas can be model checked efficiently by conversion to a Büchi automaton
[6, 7]. Here, we follow the same approach, with some optimizations and extensions
specific to our use case.

3.1 Implementation & Integration into pseuCo Book

For use in pseuCo Book’s programming exercises, the verification system has
been implemented in JavaScript, based on the pseuCo-to-CPN compiler and
the colored-petri-nets JavaScript library [5] for pseuCo Semantics. The step
checklist created by the exercise designer is converted directly to an automaton,
skipping the intermediate LTL step for efficiency. An exhaustive search of the
cross product of this automaton and the reachability graph of the Petri net is
then performed. For efficiency, the atomic propositions are not precomputed, but
dynamically evaluated during search. Verification starts only on demand, when
the user explicitly “submits” their program. All computation is done locally in
the user’s browser, allowing offline use, without relying on a centralized service.
Using the Web Worker API, all computation is performed in a background thread,
ensuring the UI stays reactive and verification can be cancelled if needed.

This verification technology backs the interactive exercise in pseuCo Book’s
new Programming with pseuCo chapter. It is not otherwise accessible to the user
– notably, users cannot input new specifications.

When verification succeeds, the corresponding exercise is marked as solved.
(Students can refine or re-do their solution and run verification again, but the
exercise will continue to be marked as solved.)

When verification fails, a failure trace is generated – a sequence of Petri
net firings. Students are then presented with an error message stating that an
execution of their program failed to meed the specification, as demonstrated in
Fig. 1. To generate this error message, in the implementation, atomic propositions
are associated with a human-readable description of the behavior they are looking
for, which are then used to assemble the final error message, for example:

The program has terminated or deadlocked. It was expected to
send "Hello" on an asynchronous channel from the main agent.

In addition, users are given the option to inspect the failure trace. This trace
by itself is not suitable to show to users of pseuCo Book as they are not expected
to know Petri nets semantics nor the details of the pseuCo-to-CPN translation.



Fig. 1. Screenshot of a programming exercise in pseuCo Book containing a fault

Fig. 2. Screenshot of a failing trace as shown in the debugger view

Fortunately, pseuCo.com, the web IDE for pseuCo, contains the pseuCo
Debugger [5], a debugger-like interface that allows “executing” a pseuCo program
like in a traditional IDE while maintaining full control over all possible executions
allowed by the language specification. PseuCo Debugger is also built on top of
the pseuCo-to-CPN toolchain – technically, it is a tool to explore the reachability
graph of a colored Petri net, but it uses the labelling function labels2, plus
knowledge of the internals of the pseuCo-to-CPN compilation, to convert the
marking into pseuCo terminology, fully hiding the Petri net and instead showing
a debugger-style interface.

This allows us to use the existing UI of pseuCo Debugger to visualize failing
traces. When verification fails, users are given an option to invoke the debugger.
This launches a slightly modified version of pseuCo Debugger, shown in Fig. 2,
with the following differences from the original version:

– The trace is fixed: The debugger opens with the full trace already pre-selected,
and users have no option to view or change nondeterministic choices – they
can only navigate forwards or backwards in time.

2 The labelling function used by pseuCo Debugger is identical to the one used in the
verification system.



– For every step of the trace, the debugger also shows the verification state:
The step checklist is converted into a flat list, presented within the debugger
interface like a todo list. (This does not allow users to see which steps are
sequential and which are in parallel order, but a checkmark and an arrow
will highlight items that are completed or currently due, respectively).

This allows the user to not only see the full sequence of actions their program
took, presented in the style of a traditional high-level debugger, but also shows
them how their program progresses (or fails to progress) through the step checklist,
helping them discover where their program deviated from the specification.

3.2 Advanced Validation Features

While pseuCo Book’s exercises generally use step checklists as described above,
some exercises need additional expressivity for their properties, or additional
features that do not fit into the theoretical framework described previously.

The following sections give an overview of these extensions as implemented
in pseuCo Book.

Fail Fast & Cycle Detection. As described previously, step checklists always
correspond to LTL formulas starting with �, and thus can only be violated
by pseuCo programs terminating (or diverging) without having satisfied the
requirements. While this is sufficient to express most relevant properties for the
exercises in pseuCo Book, such properties often yield unhelpful error messages.

For example, consider a problem statement asking students to compute 3!,
then printing it. Assume a student solution contains a mistake that causes the
program to compute and print an incorrect solution. Then, the error message
generated from the underlying LTL formula will complain that the program
terminated without printing 6, which mosts students will find less helpful then
being informed that their program printed an incorrect value.

To improve this, in the implementation, step checklists can also ban groups
of atomic proposition. If such an atomic proposition is encountered while the
corresponding step is active, verification is immediately terminated, and a custom
error message is returned as the verification result. This can then be used by the
exercise designer to explicitly ban “near-miss” behavior.

Similarly, pseuCo programs allowing cycles are typically incorrect and will
fail verification (because they permit an execution that spins without making
progress, therefore never completing the step checklist). To speed up execution
and provide better error messaging, unless otherwise configured, the verifier will
identify cycles and abort verification with an error should one be found.

Syntactic Checking. In the Programming chapter of pseuCo Book, most
exercises will want to control exactly how students use concurrency features. Part
of this control is to ensure that students do not use shared memory in exercises
about message passing, and vice versa.



This can, of course, be handled semantically by failing verification when an
unauthorized concurrency feature is used. However, this is unnecessarily slow
and complicated. A simpler approach, implemented in pseuCo Book, is to run an
additional suite of syntactic checks when requested by the exercise, forbidding
message passing or shared memory constructs as needed.

These checks run even before the user requests validation, after parsing and
type-checking, allowing violations to be shown live in the editor UI, just like
other types of syntactical errors. This also helps create the impression that the
message passing and shared memory parts of pseuCo constitute different dialects
of the language that cannot be freely mixed.

Banning message passing is done by simply banning any declaration of channel
variables. Detecting and preventing shared memory is slightly more involved:

– Global declarations are banned, unless they are channels, and global channel
variables cannot be assigned to.

– Locks and monitors cannot be declared, and join() statements are forbidden,
all of which are considered shared-memory features.

– Procedures that take structures and arrays cannot be started. This prevents
usage of shared memory by sharing pointers to heap-stored data structures
across thread boundaries.

– Methods of structs cannot be started, and start() calls cannot be within a
struct. This prevents sharing the implicit reference to the structure (“this-
reference”) between threads.
Together, these rules ensure that the only data that can be shared between

agents directly is read-only global channel declarations.

Firing Set Validation & Data Race Detection. Most exercises in the shared
memory section want to disallow data races. A data race occurs when a program
can access a variable by two agents in parallel, with at least one access being a
write access.

In the Petri net semantics of pseuCo, a data race is a marking that permits
firings that are conflicting, i.e. (a) they represent actions taken by different agents,
(b) they encode a global variable access to the same variable, (c) at least one
access is writing, and (d) they access different paths.3

Formally, this can be made accessible from LTL by introducing a new atomic
proposition that is applied to firings originating from markings that permit
conflicting firings.

In the implementation, this is handled by extending the verification algorithm:
In addition to the step checklist, a function firingSetAllowed can be passed to
the verifier. For each marking of the Petri net, after evaluating the set of enabled
firings, this function can inspect this set and may reject the combination of
firings. To prevent data races, if enabled by the exercise, pseuCo Book applies a
firingSetAllowed function that identifies conflicting firings and, if one is found,
triggers a verification failure with an error message explaining the data race.
3 This allows e.g. concurrent access to different indices of arrays, or different fields of a

struct, despite these being stored within the same variable internally.



Restricted Actions. In some exercises, the exercise designer wants to strictly
control the use of certain language features, e.g. message passing. To allow
expressing this easily, without needing the full power of LTL, groups of atomic
propositions can be declared as restricted in an exercise. Firings of the Petri net
that use any restricted action are permitted only if they are required by the step
checklist, i.e. advance the program’s progress through the checklist.

Testing Mode. In practice, a small percentage of exercises in pseuCo Book
permit solutions that exceed verification times that we consider acceptable in
a teaching context (about 10 seconds on a reasonably modern computer and
browser). For these exercises, at the expense of soundness, the framework can
be configured to use testing mode. This replaces the exhaustive search with a
fixed number of random walks, providing a compromise between a reasonably
safe assurance a student’s solution is correct and verification times.

4 Programming in pseuCo Book

Using the verification technology discussed in the previous section, we have
expanded pseuCo Book to include a new chapter on Programming with pseuCo.
Targeted at students that are already familiar with single-threaded programming
in languages like Java or C, this chapter does not introduce any programming
basics, but assumes it is a student’s first contact with practical concurrent
programming. It provides programming exercises that guide students through
their first uses of all relevant concurrency features and concepts covered in the
chapter, leaving more complex exercises to be covered in traditional exercise
sheets of an accompanying lecture.

4.1 Structure

The chapter is structured into three main sections.

A Gentle Introduction to pseuCo. This section serves to introduce students
to the pseuCo syntax and the basics of concurrency. It starts with a discussion of a
simple, sequential pseuCo program, before asking students to write a Hello World
program (using a procedure call). Next, another example introduces the start()
statement, teaching students how to use the most basic form of concurrency
(without any communication between the agents). To prevent students from
accidentally using shared memory, global variables are banned for these examples.

Message passing is generally considered to be easier to use correctly, but
to a naïve student, simply allowing shared global variables may appear easier.
To motivate the need for more controlled communication mechanisms between
threads, the introduction section closes with an “intermezzo” section explaining
The Dangers of Uncoordinated Access to Shared Memory. First, this subsection
asks students to write a variant of a Hello World program that is multi-threaded,

https://book.pseuco.com/#/read/pseuco/


using a shared string variable to “send” a greeting message to a worker thread
that reads and prints it. To analyze whether such a program is correct, pseuCo
Book then discusses a traditional concurrent counting example, using two agents
to repeatedly decrement a variable using a postfix expression (n--). Students are
encouraged to analyze this program in pseuCo.com and asked to determine the
possible outputs. Because the postfix decrement operation is not atomic, this
example can produce surprising results. PseuCo Book discusses this, and the
general risks associated with data races, concluding this section.

Message Passing Concurrency. This section introduces channels, beginning
with synchronous (handshaking) channels. After a brief explanation of their
syntax and use, students are asked to write a first minimal example, using a
string channel to assemble and print a greeting in a worker agent.

Then, pseuCo Book introduces asynchronous (buffered) channels. To demon-
strate their ability to store messages, students are asked to write a similar program
than before, but this time writing a message to a channel before starting the
agent that retrieves it.

Then, this section finishes introducing the essential message passing features
by explaining the use of the select case statement as discussed in Section 2.1.

To provide students some guidance on how programs using message passing
concurrency can be structured, this section concludes by introducing two standard
concepts:

Producer & Consumer: To introduce the producer-consumer-pattern, pseuCo
Book focuses on an example program that computes the series of factorials
of prime numbers, i.e. 2!, 3!, 5!, 7!, and so on. Students are given a sequential
implementation and are then asked to parallelize this by splitting prime
finding and factorization into two agents, with an asynchronous channel in
between. This constitutes a producer-consumer pattern with a single producer
and consumer each. The section discusses this, as well as the implications of
adding more producers and consumers.

Pipelining: To explain pipelining, this subsection focuses on prime generation.
Assuming all primes up to

√
n are already known, primes up to n can be

found by testing whether any of the smaller primes is a factor of the number in
question. This lends itself well to a pipelining approach where each candidate
number is passed from agent to agent, with each agent eliminating multiples
of one specific prime. The students are asked to implement this, writing a
program that uses prime sieving agents for 2, 3, and 5 to identify all primes
between 6 and 25.

Shared Memory Concurrency. This section lifts the restrictions on global
variables and sharing references to heap-stored data and gives students the tools
and knowledge to control the problems this causes.

After a brief reminder of the dangers of uncoordinated shared memory already
explained in the intermezzo section before the introduction of message passing,



this section begins by introducing locks. Starting with a discussion of the features
and correct usage of locks, the section revisits the concurrent counting example
seen previously. In an exercise, students are asked to modify the program by
adding locks to make it safe.

Next, pseuCo Book discusses reentrancy, i.e. the feature of locks allowing
safely calling methods while already holding a lock needed by the callee, by
allowing locks to be re-entered by the same thread as often as needed.

Then, pseuCo Book introduces arrays and structs. While these data structures,
by themselves, are not related to concurrency, they introduce a potential source
of hidden data races: In pseuCo, these data structures are stored on the heap.
This means that a data race can be created without unsafely sharing a pseuCo
variable directly, by copying a reference to an array or heap and then using both
copies to access the same field on the heap concurrently. To illustrate this point,
an exercise asks students to deliberately write a pseuCo program that has a data
race without using any global variables.

Finally, pseuCo Book introduces monitors, i.e. data structures that handle
protecting their data internally and can thus be used concurrently without
additional protection from the outside.

In many languages, monitors are an implicit construct (e.g. achieved in Java
by writing a class where all fields are private and all public methods are
synchronized). PseuCo Book begins by introducing this concept abstractly,
then asks students to apply it manually to a data structure called MessageBox
implementing a simple, shared storage for a single integer. The corresponding
exercise asks students to manually add a lock to a given template implementation
of MessageBox, then write a sample program that uses two agents where one
writes a message to the box and the other uses polling to retrieve the message as
soon as possible.

In pseuCo, a monitor is an explicit language feature, automating the process
of protecting all methods of a structure. A pseuCo monitor is similar to a struct,
with the following differences:

– When a monitor is instantiated, an implicit, managed lock is initialized.
– The lock is acquired and returned automatically on all entry and exit paths

of every method of the monitor.
– Monitors allow declaring and using conditions, allowing condition syn-

chronization, i.e. waiting and signalling similar to e.g. Java’s wait() and
notify() mechanism.

PseuCo structs already do not permit direct access to fields, so no change is
needed in this regard.

After a brief explanation of pseuCo’s monitor features, pseuCo Book discusses
the problems associated with busy waiting (as used by the students in the previous
exercise) and attempting to wait for another agent to make a change to a data
structure while holding the lock to it. To finish this section, students are then asked
to implement a monitor-based MessageBox (by adding condition synchronization
to an otherwise complete template).



4.2 Exercises & Verification

Overall, the Programming chapter of pseuCo Book contains 11 programming
exercises, spread throughout the chapter and integrated into the narrative.

10 of these exercise use true verification, with verification runtimes not
exceeding 10 seconds on reasonably modern systems for the intended solutions.
Some incorrect solutions can create longer runtimes or cause the verifier to
diverge, e.g. when containing an infinite loop that changes the program state. If
verification takes longer than a pre-determined warning threshold, students are
informed that the process “is taking longer than usual” and are asked to check
for infinite loops and try to simplify their program. This is merely a warning –
students can wait for verification to finish, or cancel at any time. (As verification
is run on the student’s machine, there is no need to enforce a timeout.)

A single exercise, the prime sieve, is set to testing mode (see Section 3.2) to
combat high verification runtimes. It uses 100 random walks to provide reasonable
assurance that a submission is correct. This is also indicated in the exercise’s UI.

Most exercises disallow infinite loops as a violation of the specification. A
single exercise, the student’s first attempt to manually create a monitor-like
structure called MessageBox, allows – and in fact requires – the presence of an
infinite loop. This does not pose any technical difficulty for verification as this
loop does not significantly increase the size of the state space.

All programming exercises share the same user interface and logic. Therefore,
adding a new exercise to pseuCo Book does not require custom code, only

– an exercise configuration file for the frontend, describing
• which pseuCo dialects (message passing / shared memory) are allowed,
• the description of the exercise as shown to students, and
• the template given to students when they begin (if any); and

– a verification background worker, i.e. a verification configuration containing
• the property to analyze, i.e. the step checklist, composing pre-made

groups of atomic propositions,
• any additional checks (e.g. syntax checks or firing set validators), and
• whether to use testing mode and if so, the number of traces to check.

This is demonstrated in Listings 1.2 and 1.3, showing the internal definition
of the “Hello Message Passing World!” exercise.

5 Conclusion

In this paper, we have developed an extension of pseuCo Book: A chapter
on concurrent programming, designed as the first contact point of students
with concurrency in practical programming. It uses pseuCo, a programming
language specifically designed for teaching, to introduce both message passing
and shared memory concurrency features. Integrated programming exercises help
give students their first experiences with concurrency in a controlled environment.
An integrated autograder, running directly inside the web app on students’

https://book.pseuco.com/#/read/pseuco/message-passing/interactive/pseuco-message-passing-hello-world


Listing 1.2. Exercise configuration for the “Hello Message Passing World!” exercise
1 const config: PseuCoProgrammingConfiguration = {
2 allowedDialects: { // configure text editor
3 mp: true, // message passing = OK
4 sm: false // shared memory = syntax error
5 },
6 exerciseDescription: <div>
7 <p>Write a pseuCo-MP program that prints <code>"Hello, World!"</code> by�

sending <code>"World"</code> on a synchronous channel to an agent that�

assembles and prints the greeting.</p>
8 </div>,
9 getWorker: () => new Worker(new URL('./worker.ts', import.meta.url))

10 // call this worker for verification
11 };

Listing 1.3. Definition of the background worker handling verification in the “Hello
Message Passing World!” exercise (see also Eq. (4))

1 const validatorConfiguration: FlowReachabilityGraphValidatorConfiguration = {
2 steps: {
3 order: "sequential",
4 steps: [{
5 moveCompletesStep: moveValidatorStartAgent(),
6 description: `start an agent`
7 }, {
8 moveCompletesStep: moveValidatorAnd(moveValidatorParticipatingAgents�

([0, 1]), moveValidatorHandshaking((v) => /^World!?$/i.test(v.�

toString()), false)),
9 description: `send "World" from the main agent to the first started �

agent on a synchronous channel`
10 }, {
11 moveCompletesStep: moveValidatorAnd(moveValidatorParticipatingAgents�

([1]), moveValidatorPrintLn(/^Hello,? World!?$/i, false)),
12 description: `print "Hello, World!" (from the first started agent)`
13 }]
14 },
15 restrictedMoves: [{ // no message passing except as required above
16 detector: moveValidatorMessagePassing(),
17 description: "performed a message-passing action"
18 }]
19 };
20 registerValidationWorkerCallback(flowReachabilityGraphValidator(�

validatorConfiguration), { mp: true, sm: false });

devices, implements LTL-based model checking, backed by pseuCo’s Petri net
semantics. It relies on a set of rich, compiler-generated labels on the Petri net.
This enables more than verifying the externally visible behavior of the program:
It grants a deep insight into the internal workings of the program, ensuring the
programming exercises are solved using the concurrency control mechanisms
specified by the exercise designer. The new chapter of pseuCo Book is freely
accessible at https://book.pseuco.com/#/read/pseuco/.
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